Advanced Machine Learning for Comparative Synovial Fluid Analysis in Osteoarthritis and Rheumatoid Arthritis.

阅读:24
作者:Kopeć Karolina Krystyna, Uccheddu Gabrieleanselmo, Chodnicki Paweł, Noto Antonio, Piras Cristina, Spada Martina, Atzori Luigi, Fanos Vassilios
Osteoarthritis (OA) and rheumatoid arthritis (RA) are joint diseases that share similar clinical features but have different etiologies, making a differential diagnosis particularly challenging. Background/Objectives: Utilizing advanced machine learning (ML) techniques on metabolomic data, this study aimed to identify key metabolites in synovial fluid (SF) that could aid in distinguishing between OA and RA. Methods: Metabolite data from the MetaboLights database (MTBLS564), analyzed using nuclear magnetic resonance (NMR), were processed using normalization, a principal component analysis (PCA), and a partial least squares discriminant analysis (PLS-DA) to reveal prominent clustering. Results: Decision forests and random forest classifiers, optimized using genetic algorithms (GAs), highlighted a selection of a few metabolites-primarily glutamine, pyruvate, and proline-with significant discriminative power. A Shapley additive explanations (SHAP) analysis confirmed these metabolites to be pivotal predictors, offering a streamlined approach for clinical diagnostics. Conclusions: Our findings suggest that a minimal set of key metabolites can effectively be relied upon to distinguish between OA and RA, supported by an optimized ML model achieving high accuracy. This workflow could streamline diagnostic efficiency and enhance clinical decision-making in rheumatology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。