There is considerable interest in the discovery of peptide ligands that bind to protein targets. Discovery of such ligands is usually approached by screening large peptide libraries. However, the individual peptides must be tethered to a tag that preserves their individual identities (e.g., phage display or one-bead one-compound). To overcome this limitation, we have developed a method for screening libraries of label-free peptides for binding to a protein target in solution as a single batch. The screening is based on decreased amide hydrogen exchange by peptides that bind to the target. Hydrogen exchange is measured by mass spectrometry. We demonstrate the approach using a peptide library derived from the Escherichia coli proteome that contained 6664 identifiable features. The library was spiked separately with a peptide spanning the calmodulin binding domain of endothelial nitric oxide synthase (eNOS, 494-513) and a peptide spanning the N-terminal 20 residues of bovine ribonuclease A (S peptide). Human calmodulin and bovine ribonuclease S (RNase S) were screened against the library. Using a novel data analysis workflow, we identified the eNOS peptide as the only calmodulin binding peptide and S peptide as the only ribonuclease S binding peptide in the library.
Label-Free, In-Solution Screening of Peptide Libraries for Binding to Protein Targets Using Hydrogen Exchange Mass Spectrometry.
阅读:4
作者:Maaty Walid S, Weis David D
| 期刊: | Journal of the American Chemical Society | 影响因子: | 15.600 |
| 时间: | 2016 | 起止号: | 2016 Feb 3; 138(4):1335-43 |
| doi: | 10.1021/jacs.5b11742 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
