Fragment Screening Identifies Novel Allosteric Binders and Binding Sites in the VHR (DUSP3) Phosphatase.

阅读:3
作者:Wu Jiaqian, Baranowski Marek R, Aleshin Alexander E, Isiorho Eta A, Lambert Lester J, De Backer Laurent J S, Han Ye Na, Das Ranajit, Sheffler Douglas J, Bobkov Andrey A, Lemberikman Alexis M, Keedy Daniel A, Cosford Nicholas D P, Tautz Lutz
The human Vaccinia H1-related phosphatase (VHR; DUSP3) is a critical positive regulator of the innate immune response. Recent studies suggest that inhibiting VHR could be beneficial in treating sepsis and septic shock. VHR belongs to the superfamily of protein tyrosine phosphatases (PTPs), a large class of enzymes that are notoriously difficult to target with small molecules. Fragment-based drug discovery (FBDD) has emerged as an effective strategy for generating potent ligands, even for challenging drug targets. Here, we present a fluorine NMR-based discovery platform for identifying fragments that bind to VHR. This platform encompasses automated library assembly, mixture formation, quantitative material transfer, fluorine NMR screening, and biophysical hit confirmation. We demonstrate that this streamlined, integrated screening workflow produces validated hits with diverse chemical matter and tangible structure-activity relationships (SAR). Crystal structures yielded detailed information on the fragment-protein interactions and provide a basis for future structurally enabled ligand optimization. Notably, we discovered novel ligand binding sites on VHR, distant from the conserved active site, facilitating the generation of selective VHR modulators. This fragment discovery platform can be applied to other PTPs and holds significant potential for identifying potent and selective ligands.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。