Analysis of Invertebrate and Protist N-Glycans.

阅读:5
作者:Hykollari Alba, Paschinger Katharina, Eckmair Barbara, Wilson Iain B H
N-glycans from invertebrates and protists have often unusual structures which present analytical challenges. Both core and antennal modifications can be quite different from the more familiar vertebrate glycan motifs; thereby, contrary to the concept that "simple" organisms have "simple" N-glycans, rather complex oligosaccharides structures, including zwitterionic and anionic ones, have been found in a range of species. Thus, to facilitate the optimized elucidation of the maximal possible range of structures, the analytical workflow for glycomics of these organisms should include sequential release and fractionation steps. Peptide:N-glycosidase F is sufficient to isolate N-glycans from fungi and some protists, but in most invertebrates core α1,3-fucose is present, so release of the glycans from glycopeptides with peptide:N-glycosidases A is required. Subsequent solid-phase extraction with graphitized carbon and reversed phase resins enables different classes of N-glycans to be separated prior to high-pressure liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Depending on the types and numbers of glycans present, either reversed- or normal-phase HPLC (or both in series) enable even single isomeric or isobaric structures to be separated prior to MALDI-TOF MS and MS/MS. The use of enzymatic or chemical treatments allows further insights to be gained, although some glycan modifications (especially methylation) are resistant. Using a battery of methods, sometimes up to 100 structures from a single organism can be assigned, a complexity which raises evolutionary questions regarding the function of these glycans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。