Machine learning to predict gold nanostar optical properties.

阅读:15
作者:Wu Peiying, Zhang Rui, Porte Céline, Kiessling Fabian, Lammers Twan, Rezvantalab Sima, Mihandoost Sara, Pallares Roger M
Gold nanostars (AuNS) are nanoparticles with spiky structures and morphology-dependent optical features. These include strong extinction coefficients in the visible and near-infrared regions of the spectrum, which are commonly exploited for biomedical imaging and therapy. AuNS can be obtained via seedless protocols with Good's buffers, which are beneficial because of their simplicity and the use of biocompatible reagents. However, AuNS growth and optical properties are affected by various experimental factors during their seedless synthesis, which affects their performance in diagnosis and therapy. In this study, we develop a workflow based on machine learning models to predict AuNS optical properties. This approach includes data collection, feature selection, data generation, and model selection, resulting in predictions of the first and second localized surface plasmon resonance positions within 9 and 15% of their true values (root-mean-squared percentage error), respectively. Our results highlight the benefits of using machine learning models to infer the optical properties of AuNS from their synthesis conditions, potentially improving nanoparticle design and production for better disease diagnosis and therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。