The knowledge driven DBTL cycle provides mechanistic insights while optimising dopamine production in Escherichia coli.

阅读:7
作者:Hägele Lorena, Trachtmann Natalia, Takors Ralf
BACKGROUND: Dopamine is a promising organic compound with several key applications in emergency medicine, diagnosis and treatment of cancer, production of lithium anodes, and wastewater treatment. Since studies on in vivo dopamine production are limited, this study demonstrates the development and optimisation of a dopamine production strain by the help of the knowledge driven design-build-test-learn (DBTL) cycle for rational strain engineering. RESULTS: The knowledge driven DBTL cycle, involving upstream in vitro investigation, is an automated workflow that enables both mechanistic understanding and efficient DBTL cycling. Following the in vitro cell lysate studies, the results were translated to the in vivo environment through high-throughput ribosome binding site (RBS) engineering. As a result, we developed a dopamine production strain capable of producing dopamine at concentrations of 69.03 ± 1.2 mg/L which equals 34.34 ± 0.59 mg/g(biomass). Compared to state-of-the-art in vivo dopamine production, our approach improved performance by 2.6 and 6.6-fold, respectively. CONCLUSION: In essence, a highly efficient dopamine production strain was developed by implementing the knowledge driven DBTL cycle involving upstream in vitro investigation. The fine-tuning of the dopamine pathway by high-throughput RBS engineering clearly demonstrated the impact of GC content in the Shine-Dalgarno sequence on the RBS strength.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。