Geothermal energy exploitation in urban areas necessitates robust real-time seismic monitoring for risk mitigation. While surface-based seismic networks are valuable, they are sensitive to anthropogenic noise. This study investigates the capabilities of borehole Distributed Acoustic Sensing (DAS) for local seismic monitoring of a geothermal field located in Munich, Germany. We leverage the operator's cloud infrastructure for DAS data management and processing. We introduce a comprehensive workflow for the automated processing of DAS data, including seismic event detection, onset time picking, and event characterization. The latter includes the determination of the event hypocenter, origin time, seismic moment, and stress drop. Waveform-based parameters are obtained after the automatic conversion of the DAS strain-rate to acceleration. We present the results of a 6-month monitoring period that demonstrates the capabilities of the proposed monitoring set-up, from the management of DAS data volumes to the establishment of an event catalog. The comparison of the results with seismometer data shows that the phase and amplitude of DAS data can be reliably used for seismic processing. This emphasizes the potential of improving seismic monitoring capabilities with hybrid networks, combining surface and downhole seismometers with borehole DAS. The inherent high-density array configuration of borehole DAS proves particularly advantageous in urban and operational environments. This study stresses that realistic prior knowledge of the seismic velocity model remains essential to prevent a large number of DAS sensing points from biasing results and interpretation. This study suggests the potential for a gradual extension of the network as geothermal exploitation progresses and new wells are equipped, owing to the scalability of the described monitoring system.
Seismic Monitoring of a Deep Geothermal Field in Munich (Germany) Using Borehole Distributed Acoustic Sensing.
阅读:16
作者:Azzola Jérôme, Gaucher Emmanuel
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 May 11; 24(10):3061 |
| doi: | 10.3390/s24103061 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
