Background: Our study presented a novel LC-MS/MS method for the simultaneous quantification of α-tocopherol (α-TOH) and its phase II metabolites, α-13'-COOH and α-13'-OH, in human serum using deuterium-labeled internal standards (d(6)-α-TOH, d(6)-α-13'-COOH, d(6)-α-13'-OH). Methods: The method addresses the analytical challenge posed by the significantly different concentration ranges of α-TOH (µmol/L) and its metabolites (nmol/L). Previous methods quantified these analytes separately, which caused an increase in workflow complexity. Results: Key features include the synthesis of stable isotope-labeled standards and the use of a pentafluorophenyl-based core-shell chromatography column for baseline separation of both α-TOH and its metabolites. Additionally, solid phase extraction (SPE) with a HybridSPE(®) material provides a streamlined sample preparation, enhancing analyte recovery and improving sensitivity. By utilizing deuterium-labeled standards, the method compensates for matrix effects and ion suppression. This new approach achieves precise and accurate measurements with limits of detection (LOD) and quantification (LOQ), similar to previous studies. Calibration, accuracy, and precision parameters align well with the existing literature. Conclusions: Our method offers significant advantages in the simultaneous analysis of tocopherol and its metabolites despite concentration differences spanning up to three orders of magnitude. In contrast to earlier studies, which required separate sample preparations and analytical techniques for tocopherol and its metabolites, our approach streamlines this process. The use of a solid-phase extraction procedure allows for parallel sample preparation. This not only enhances efficiency but also significantly accelerates pre-analytical workflows, making the method highly suitable for large-scale studies.
A New LC-MS/MS-Based Method for the Simultaneous Detection of α-Tocopherol and Its Long-Chain Metabolites in Plasma Samples Using Stable Isotope Dilution Analysis.
阅读:4
作者:Maxones Alexander, Beck Eva, Rimbach Gerald, Birringer Marc
| 期刊: | Pharmaceuticals | 影响因子: | 4.800 |
| 时间: | 2024 | 起止号: | 2024 Oct 22; 17(11):1405 |
| doi: | 10.3390/ph17111405 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
