Programmable µChopper Device with On-Chip Droplet Mergers for Continuous Assay Calibration.

阅读:8
作者:Shi Nan, Easley Christopher J
While droplet-based microfluidics is a powerful technique with transformative applications, most devices are passively operated and thus have limited real-time control over droplet contents. In this report, an automated droplet-based microfluidic device with pneumatic pumps and salt water electrodes was developed to generate and coalesce up to six aqueous-in-oil droplets (2.77 nL each). Custom control software combined six droplets drawn from any of four inlet reservoirs. Using our μChopper method for lock-in fluorescence detection, we first accomplished continuous linear calibration and quantified an unknown sample. Analyte-independent signal drifts and even an abrupt decrease in excitation light intensity were corrected in real-time. The system was then validated with homogeneous insulin immunoassays that showed a nonlinear response. On-chip droplet merging with antibody-oligonucleotide (Ab-oligo) probes, insulin standards, and buffer permitted the real-time calibration and correction of large signal drifts. Full calibrations (LOD(conc) = 2 ng mL(-1) = 300 pM; LOD(amt) = 5 amol) required <1 min with merely 13.85 nL of Ab-oligo reagents, giving cost-savings 160-fold over the standard well-plate format while also automating the workflow. This proof-of-concept device-effectively a microfluidic digital-to-analog converter-is readily scalable to more droplets, and it is well-suited for the real-time automation of bioassays that call for expensive reagents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。