This study presents a novel data-driven approach for calculating multiphase flow rates in electrical submersible pumped wells. Traditional methods for estimating flow rates at test separators fail to identify production trends and require additional costs for maintenance. In response, virtual flow metering (VFM) has emerged as an attractive research area in the oil and gas industry. This study introduces a robust workflow utilizing symbolic regression, extreme gradient boosted trees, and a deep learning model that includes a pipeline of convolutional neural network (CNN) layers and long short-term memory algorithm (LSTM) layers to predict liquid rate and water cut in real time based on pump sensors' data. The novelty of this approach lies in offering a cost-effective and accurate alternative to the usage of multiphase physical flow meters and production testing. Additionally, the study provides insights into the potential of data-driven methods for VFM in electrical submersible pumped wells, highlighting the effectiveness of the proposed approach. Overall, this study contributes to the field by introducing a new, data-driven method for accurately predicting multiphase flow rates in real time, thereby providing a valuable tool for monitoring and optimizing production processes in the oil and gas industry.
Real-Time Liquid Rate and Water Cut Prediction From the Electrical Submersible Pump Sensors Data Using Machine-Learning Algorithms.
阅读:3
作者:Abdalla Ramez, Al-Hakimi Waleed, Perozo Nelson, Jaeger Philip
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2023 | 起止号: | 2023 Mar 30; 8(14):12671-12692 |
| doi: | 10.1021/acsomega.2c07609 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
