This study presents a novel data-driven approach for calculating multiphase flow rates in electrical submersible pumped wells. Traditional methods for estimating flow rates at test separators fail to identify production trends and require additional costs for maintenance. In response, virtual flow metering (VFM) has emerged as an attractive research area in the oil and gas industry. This study introduces a robust workflow utilizing symbolic regression, extreme gradient boosted trees, and a deep learning model that includes a pipeline of convolutional neural network (CNN) layers and long short-term memory algorithm (LSTM) layers to predict liquid rate and water cut in real time based on pump sensors' data. The novelty of this approach lies in offering a cost-effective and accurate alternative to the usage of multiphase physical flow meters and production testing. Additionally, the study provides insights into the potential of data-driven methods for VFM in electrical submersible pumped wells, highlighting the effectiveness of the proposed approach. Overall, this study contributes to the field by introducing a new, data-driven method for accurately predicting multiphase flow rates in real time, thereby providing a valuable tool for monitoring and optimizing production processes in the oil and gas industry.
Real-Time Liquid Rate and Water Cut Prediction From the Electrical Submersible Pump Sensors Data Using Machine-Learning Algorithms.
阅读:7
作者:Abdalla Ramez, Al-Hakimi Waleed, Perozo Nelson, Jaeger Philip
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2023 | 起止号: | 2023 Mar 30; 8(14):12671-12692 |
| doi: | 10.1021/acsomega.2c07609 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
