BACKGROUND: The principal line of investigation in Genome Wide Association Studies (GWAS) is the identification of main effects, that is individual Single Nucleotide Polymorphisms (SNPs) which are associated with the trait of interest, independent of other factors. A variety of methods have been proposed to this end, mostly statistical in nature and differing in assumptions and type of model employed. Moreover, for a given model, there may be multiple choices for the SNP genotype encoding. As an alternative to statistical methods, machine learning methods are often applicable. Typically, for a given GWAS, a single approach is selected and utilized to identify potential SNPs of interest. Even when multiple GWAS are combined through meta-analyses within a consortium, each GWAS is typically analyzed with a single approach and the resulting summary statistics are then utilized in meta-analyses. RESULTS: In this work we use as case studies a Type 2 Diabetes (T2D) and a breast cancer GWAS to explore a diversity of applicable approaches spanning different methods and encoding choices. We assess similarity of these approaches based on the derived ranked lists of SNPs and, for each GWAS, we identify a subset of representative approaches that we use as an ensemble to derive a union list of top SNPs. Among these are SNPs which are identified by multiple approaches as well as several SNPs identified by only one or a few of the less frequently used approaches. The latter include SNPs from established loci and SNPs which have other supporting lines of evidence in terms of their potential relevance to the traits. CONCLUSIONS: Not every main effect analysis method is suitable for every GWAS, but for each GWAS there are typically multiple applicable methods and encoding options. We suggest a workflow for a single GWAS, extensible to multiple GWAS from consortia, where representative approaches are selected among a pool of suitable options, to yield a more comprehensive set of SNPs, potentially including SNPs that would typically be missed with the most popular analyses, but that could provide additional valuable insights for follow-up.
Exploration of a diversity of computational and statistical measures of association for genome-wide genetic studies.
阅读:6
作者:Manduchi Elisabetta, Orzechowski Patryk R, Ritchie Marylyn D, Moore Jason H
| 期刊: | Biodata Mining | 影响因子: | 6.100 |
| 时间: | 2019 | 起止号: | 2019 Jul 9; 12:14 |
| doi: | 10.1186/s13040-019-0201-4 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
