Generative Landscapes and Dynamics to Design Functional Multidomain Artificial Transmembrane Transporters.

阅读:7
作者:Montalvillo Ortega Fernando, Hossain Fariha, Volobouev Vladimir V, Meloni Gabriele, Torabifard Hedieh, Morcos Faruck
Design and synthesis of functionally active artificial proteins is challenging, as it requires simultaneous consideration of interconnected factors, such as fold, dynamics, and function. These evolutionary constraints are encoded in protein sequences and can be learned through the latent generative landscape (LGL) framework to predict functional sequences by leveraging evolutionary patterns, enabling exploration of uncharted sequence space. By simulating designed proteins through molecular dynamics (MD), we gain deeper insights into the interdependencies governing structure and dynamics. We present a synergized workflow combining LGL with MD and biochemical characterization, allowing us to explore the sequence space effectively. This approach has been applied to design and characterize two artificial multidomain ATP-driven transmembrane copper transporters, with native-like functionality. This integrative approach proved effective in revealing the intricate relationships between sequence, structure, and function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。