N-linked glycosylation is an important post-translational modification that is difficult to identify and quantify in traditional bottom-up proteomics experiments. Enzymatic deglycosylation of proteins by peptide:N-glycosidase F (PNGase F) prior to digestion and subsequent mass spectrometry analysis has been shown to improve coverage of various N-linked glycopeptides, but the inclusion of this step may add up to a day to an already lengthy sample preparation process. An efficient way to integrate deglycosylation with bottom-up proteomics would be a valuable contribution to the glycoproteomics field. Here, we demonstrate a proteomics workflow in which deglycosylation and proteolytic digestion of samples occur simultaneously using suspension trapping (S-Trap). This approach adds no time to standard digestion protocols. Applying this sample preparation strategy to a human serum sample, we demonstrate improved identification of potential N-glycosylated peptides in deglycosylated samples compared with non-deglycosylated samples, identifying 156 unique peptides that contain the N-glycosylation motif (asparagine-X-serine/threonine), the deamidation modification characteristic of PNGase F, and an increase in peptide intensity over a control sample. We expect that this rapid sample preparation strategy will assist in the identification and quantification of both known and potential glycoproteins. Data are available via ProteomeXchange with the identifier PXD037921.
Simultaneous N-Deglycosylation and Digestion of Complex Samples on S-Traps Enables Efficient Glycosite Hypothesis Generation.
阅读:6
作者:DeRosa Christine M, Weaver Simon D, Wang Chien-Wei, Schuster-Little Naviya, Whelan Rebecca J
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2023 | 起止号: | 2023 Jan 20; 8(4):4410-4418 |
| doi: | 10.1021/acsomega.2c08071 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
