Perovskite electrocatalysts like strontium cobaltite (SrCoO(x), denoted as SCO) experience dynamic changes in both surface and bulk during the oxygen evolution reaction (OER), rather than remaining static. This dynamic, electrochemically driven evolution in composition, structure, and ionic defects (e.g., oxygen vacancies) can strongly impact the OER activity and stability. Yet, the current lack of quantitative information on these processes impedes a precise and predictive evaluation of the individual and combined effect of both bulk and surface transformations. Here, using epitaxial SCO thin films as a model system, we demonstrate that SCO is a bulk and surface redox-active OER electrocatalyst that undergoes a bulk phase transition via electrochemically induced oxygen intercalation, as well as a surface phase transition toward Co (oxy-)hydroxide. Specifically, applying a suite of operando and ex situ characterization we established a reliable relationship between oxygen nonstoichiometry, optical density, and conductivity as a function of applied potentials. We further accurately quantify the evolution of oxygen stoichiometry in the SCO bulk and the thickness of the formed surface secondary phase. Our work provides a reliable and generalizable workflow and operando characterization toolbox for quantitative assessment of surface and bulk transformations in oxygen-deficient perovskite electrocatalysts.
Quantifying Dynamic Changes of Oxygen Nonstoichiometry and Formation of Surface Phases of SrCoO(x) Electrocatalysts by Operando Characterizations.
阅读:6
作者:Hu Yang, Wei Luhan, Chen Haowen, Xu Zihan, Shavorskiy Andrey, Baeumer Christoph, Lu Qiyang
| 期刊: | ACS Nano | 影响因子: | 16.000 |
| 时间: | 2025 | 起止号: | 2025 Apr 15; 19(14):13999-14009 |
| doi: | 10.1021/acsnano.4c18105 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
