Quantifying Dynamic Changes of Oxygen Nonstoichiometry and Formation of Surface Phases of SrCoO(x) Electrocatalysts by Operando Characterizations.

阅读:22
作者:Hu Yang, Wei Luhan, Chen Haowen, Xu Zihan, Shavorskiy Andrey, Baeumer Christoph, Lu Qiyang
Perovskite electrocatalysts like strontium cobaltite (SrCoO(x), denoted as SCO) experience dynamic changes in both surface and bulk during the oxygen evolution reaction (OER), rather than remaining static. This dynamic, electrochemically driven evolution in composition, structure, and ionic defects (e.g., oxygen vacancies) can strongly impact the OER activity and stability. Yet, the current lack of quantitative information on these processes impedes a precise and predictive evaluation of the individual and combined effect of both bulk and surface transformations. Here, using epitaxial SCO thin films as a model system, we demonstrate that SCO is a bulk and surface redox-active OER electrocatalyst that undergoes a bulk phase transition via electrochemically induced oxygen intercalation, as well as a surface phase transition toward Co (oxy-)hydroxide. Specifically, applying a suite of operando and ex situ characterization we established a reliable relationship between oxygen nonstoichiometry, optical density, and conductivity as a function of applied potentials. We further accurately quantify the evolution of oxygen stoichiometry in the SCO bulk and the thickness of the formed surface secondary phase. Our work provides a reliable and generalizable workflow and operando characterization toolbox for quantitative assessment of surface and bulk transformations in oxygen-deficient perovskite electrocatalysts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。