PURPOSE: The objective of this study was to develop a fully automatic mass segmentation method called AMS-U-Net for digital breast tomosynthesis (DBT), a popular breast cancer screening imaging modality. The aim was to address the challenges posed by the increasing number of slices in DBT, which leads to higher mass contouring workload and decreased treatment efficiency. APPROACH: The study used 50 slices from different DBT volumes for evaluation. The AMS-U-Net approach consisted of four stages: image pre-processing, AMS-U-Net training, image segmentation, and post-processing. The model performance was evaluated by calculating the true positive ratio (TPR), false positive ratio (FPR), F-score, intersection over union (IoU), and 95% Hausdorff distance (pixels) as they are appropriate for datasets with class imbalance. RESULTS: The model achieved 0.911, 0.003, 0.911, 0.900, 5.82 for TPR, FPR, F-score, IoU, and 95% Hausdorff distance, respectively. CONCLUSIONS: The AMS-U-Net model demonstrated impressive visual and quantitative results, achieving high accuracy in mass segmentation without the need for human interaction. This capability has the potential to significantly increase clinical efficiency and workflow in DBT for breast cancer screening.
AMS-U-Net: automatic mass segmentation in digital breast tomosynthesis via U-Net.
阅读:5
作者:Qasem Ahmad, Qin Genggeng, Zhou Zhiguo
| 期刊: | Journal of Medical Imaging | 影响因子: | 1.700 |
| 时间: | 2024 | 起止号: | 2024 Mar;11(2):024005 |
| doi: | 10.1117/1.JMI.11.2.024005 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
