Accurate identification of sleep stages is essential for understanding sleep physiology and its role in neurological and behavioral research. Manual scoring of polysomnographic data, while reliable, is time-intensive and prone to variability. This study presents a novel Python-based algorithm for automated vigilance state scoring using single-channel electroencephalogram (EEG) recordings from rats and mice. The algorithm employs artifact processing, multi-band frequency analysis, and Gaussian mixture model (GMM)-based clustering to classify wakefulness, non-rapid, and rapid eye movement sleep (NREM and REM sleep, respectively). Combining narrow and broad frequency bands across the delta, theta, and sigma ranges, it uses a majority voting system to enhance accuracy, with tailored preprocessing and voting criteria improving REM detection. Validation on datasets from 10 rats and 10 mice under standard conditions showed sleep-wake state detection accuracies of 92% and 93%, respectively, closely matching manual scoring and comparable to existing methods. REM sleep detection accuracies of 89% (mice) and 91% (rats) align with previously reported (85-90%). Processing a full day of EEG data within several minutes, the algorithm is advantageous for large-scale and longitudinal studies. Its open-source design, flexibility, and scalability make it a robust, efficient tool for automated rodent sleep scoring, advancing research in standard experimental conditions, including aging and sleep deprivation.
Open-Source Algorithm for Automated Vigilance State Classification Using Single-Channel Electroencephalogram in Rodents.
阅读:5
作者:Saevskiy Anton, Suntsova Natalia, Kosenko Peter, Alam Md Noor, Kostin Andrey
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Feb 3; 25(3):921 |
| doi: | 10.3390/s25030921 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
