Facile Conversion and Optimization of Structured Illumination Image Reconstruction Code into the GPU Environment.

阅读:5
作者:Oh Kwangsung, Bianco Piero R
Superresolution, structured illumination microscopy (SIM) is an ideal modality for imaging live cells due to its relatively high speed and low photon-induced damage to the cells. The rate-limiting step in observing a superresolution image in SIM is often the reconstruction speed of the algorithm used to form a single image from as many as nine raw images. Reconstruction algorithms impose a significant computing burden due to an intricate workflow and a large number of often complex calculations to produce the final image. Further adding to the computing burden is that the code, even within the MATLAB environment, can be inefficiently written by microscopists who are noncomputer science researchers. In addition, they do not take into consideration the processing power of the graphics processing unit (GPU) of the computer. To address these issues, we present simple but efficient approaches to first revise MATLAB code, followed by conversion to GPU-optimized code. When combined with cost-effective, high-performance GPU-enabled computers, a 4- to 500-fold improvement in algorithm execution speed is observed as shown for the image denoising Hessian-SIM algorithm. Importantly, the improved algorithm produces images identical in quality to the original.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。