CT-derived radiomics predict the growth rate of renal tumours in von Hippel-Lindau syndrome.

阅读:8
作者:Singh S, Dehghani Firouzabadi F, Chaurasia A, Homayounieh F, Ball M W, Huda F, Turkbey E B, Linehan W M, Malayeri A A
AIM: To predict renal tumour growth patterns in von Hippel-Lindau syndrome by utilising radiomic features to assist in developing personalised surveillance plans leading to better patient outcomes. MATERIALS AND METHODS: The study evaluated 78 renal tumours in 55 patients with histopathologically-confirmed clear cell renal cell carcinomas (ccRCCs), which were segmented and radiomics were extracted. Volumetric doubling time (VDT) classified the tumours into fast-growing (VDT <365 days) or slow-growing (VDT ≥365 days). Volumetric and diametric growth analyses were compared between the groups. Multiple logistic regression and random forest classifiers were used to select the best features and models based on their correlation and predictability of VDT. RESULTS: Fifty-five patients (mean age 42.2 ± 12.2 years, 27 men) with a mean time difference of 3.8 ± 2 years between the baseline and preoperative scans were studied. Twenty-five tumours were fast-growing (low VDT, i.e., <365 days), and 53 tumours were slow-growing (high VDT, i.e., ≥365 days). The median volumetric and diametric growth rates were 1.71 cm(3)/year and 0.31 cm/year. The best feature using univariate analysis was wavelet-HLL_glcm_ldmn (area under the receiver operating characteristic [ROC] curve [AUC] of 0.80, p<0.0001), and with the random forest classifier, it was log-sigma-0-5-mm-3D_glszm_ZonePercentage (AUC: 79). The AUC of the ROC curves using multiple logistic regression was 0.74, and with the random forest classifier was 0.73. CONCLUSION: Radiomic features correlated with VDT and were able to predict the growth pattern of renal tumours in patients with VHL syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。