Satellite remote sensing offers an effective remedy to challenges in ground-based and aerial mapping that have previously impeded quantitative assessments of global seagrass extent. Commercial satellite platforms offer fine spatial resolution, an important consideration in patchy seagrass ecosystems. Currently, no consistent protocol exists for image processing of commercial data, limiting reproducibility and comparison across space and time. Additionally, the radiometric performance of commercial satellite sensors has not been assessed against the dark and variable targets characteristic of coastal waters. This study compared data products derived from two commercial satellites: DigitalGlobe's WorldView-2 and Planet's RapidEye. A single scene from each platform was obtained at St. Joseph Bay in Florida, USA, corresponding to a November 2010 field campaign. A reproducible processing regime was developed to transform imagery from basic products, as delivered from each company, into analysis-ready data usable for various scientific applications. Satellite-derived surface reflectances were compared against field measurements. WorldView-2 imagery exhibited high disagreement in the coastal blue and blue spectral bands, chronically overpredicting. RapidEye exhibited better agreement than WorldView-2, but overpredicted slightly across all spectral bands. A deep convolutional neural network was used to classify imagery into deep water, land, submerged sand, seagrass, and intertidal classes. Classification results were compared to seagrass maps derived from photointerpreted aerial imagery. This study offers the first radiometric assessment of WorldView-2 and RapidEye over a coastal system, revealing inherent calibration issues in shorter wavelengths of WorldView-2. Both platforms demonstrated as much as 97% agreement with aerial estimates, despite differing resolutions. Thus, calibration issues in WorldView-2 did not appear to interfere with classification accuracy, but could be problematic if estimating biomass. The image processing routine developed here offers a reproducible workflow for WorldView-2 and RapidEye imagery, which was tested in two additional coastal systems. This approach may become platform independent as more sensors become available.
Performance across WorldView-2 and RapidEye for reproducible seagrass mapping.
阅读:6
作者:Coffer Megan M, Schaeffer Blake A, Zimmerman Richard C, Hill Victoria, Li Jiang, Islam Kazi A, Whitman Peter J
| 期刊: | Remote Sensing of Environment | 影响因子: | 11.400 |
| 时间: | 2020 | 起止号: | 2020 Dec 1; 250:112036 |
| doi: | 10.1016/j.rse.2020.112036 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
