Clinical decisions are often guided by clinical prediction models or diagnostic tests. Decision curve analysis (DCA) combines classical assessment of predictive performance with the consequences of using these strategies for clinical decision-making. In DCA, the best decision strategy is the one that maximizes the net benefit: the net number of true positives (or negatives) provided by a given strategy. Here, we employ Bayesian approaches to DCA, addressing four fundamental concerns when evaluating clinical decision strategies: (i) which strategies are clinically useful, (ii) what is the best available decision strategy, (iii) which of two competing strategies is better, and (iv) what is the expected net benefit loss associated with the current level of uncertainty. While often consistent with frequentist point estimates, fully Bayesian DCA allows for an intuitive probabilistic interpretation framework and the incorporation of prior evidence. We evaluate the methods using simulation and provide a comprehensive case study. Software implementation is available in the bayesDCA R package. Ultimately, the Bayesian DCA workflow may help clinicians and health policymakers adopt better-informed decisions.
Bayesian Decision Curve Analysis With Bayesdca.
阅读:12
作者:Netto Flores Cruz Giuliano, Korthauer Keegan
| 期刊: | Statistics in Medicine | 影响因子: | 1.800 |
| 时间: | 2024 | 起止号: | 2024 Dec 30; 43(30):6042-6058 |
| doi: | 10.1002/sim.10277 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
