Core Genome Multilocus Sequence Typing and Antibiotic Susceptibility Prediction from Whole-Genome Sequence Data of Multidrug-Resistant Pseudomonas aeruginosa Isolates.

阅读:10
作者:Cunningham Scott A, Eberly Allison R, Beisken Stephan, Posch Andreas E, Schuetz Audrey N, Patel Robin
Over the past decade, whole-genome sequencing (WGS) has overtaken traditional bacterial typing methods for studies of genetic relatedness. Further, WGS data generated during epidemiologic studies can be used in other clinically relevant bioinformatic applications, such as antibiotic resistance prediction. Using commercially available software tools, the relatedness of 38 clinical isolates of multidrug-resistant Pseudomonas aeruginosa was defined by two core genome multilocus sequence typing (cgMLST) methods, and the WGS data of each isolate was analyzed to predict antibiotic susceptibility to nine antibacterial agents. The WGS typing and resistance prediction data were compared with pulsed-field gel electrophoresis (PFGE) and phenotypic antibiotic susceptibility results, respectively. Simpson's Diversity Index and adjusted Wallace pairwise assessments of the three typing methods showed nearly identical discriminatory power. Antibiotic resistance prediction using a trained analytical pipeline examined 342 bacterial-drug combinations with an overall categorical agreement of 92.4% and very major, major, and minor error rates of 3.6, 4.1, and 4.1%, respectively. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa isolates are a serious public health concern due to their resistance to nearly all or all of the available antibiotics, including carbapenems. Utilizing molecular approaches in conjunction with antibiotic susceptibility prediction software warrants investigation for use in the clinical laboratory workflow. These molecular tools coupled with antibiotic resistance prediction tools offer the opportunity to overcome the extended turnaround time and technical challenges of phenotypic susceptibility testing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。