Liquid-Liquid Dispersion Performance Prediction and Uncertainty Quantification Using Recurrent Neural Networks.

阅读:4
作者:Liang Fuyue, Valdes Juan P, Cheng Sibo, Kahouadji Lyes, Shin Seungwon, Chergui Jalel, Juric Damir, Arcucci Rossella, Matar Omar K
We demonstrate the application of a recurrent neural network (RNN) to perform multistep and multivariate time-series performance predictions for stirred and static mixers as exemplars of complex multiphase systems. We employ two network architectures in this study, fitted with either long short-term memory and gated recurrent unit cells, which are trained on high-fidelity, three-dimensional, computational fluid dynamics simulations of the mixer performance, in the presence and absence of surfactants, in terms of drop size distributions and interfacial areas as a function of system parameters; these include physicochemical properties, mixer geometry, and operating conditions. Our results demonstrate that while it is possible to train RNNs with a single fully connected layer more efficiently than with an encoder-decoder structure, the latter is shown to be more capable of learning long-term dynamics underlying dispersion metrics. Details of the methodology are presented, which include data preprocessing, RNN model exploration, and methods for model performance visualization; an ensemble-based procedure is also introduced to provide a measure of the model uncertainty. The workflow is designed to be generic and can be deployed to make predictions in other industrial applications with similar time-series data.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。