Liquid-Liquid Dispersion Performance Prediction and Uncertainty Quantification Using Recurrent Neural Networks.

阅读:10
作者:Liang Fuyue, Valdes Juan P, Cheng Sibo, Kahouadji Lyes, Shin Seungwon, Chergui Jalel, Juric Damir, Arcucci Rossella, Matar Omar K
We demonstrate the application of a recurrent neural network (RNN) to perform multistep and multivariate time-series performance predictions for stirred and static mixers as exemplars of complex multiphase systems. We employ two network architectures in this study, fitted with either long short-term memory and gated recurrent unit cells, which are trained on high-fidelity, three-dimensional, computational fluid dynamics simulations of the mixer performance, in the presence and absence of surfactants, in terms of drop size distributions and interfacial areas as a function of system parameters; these include physicochemical properties, mixer geometry, and operating conditions. Our results demonstrate that while it is possible to train RNNs with a single fully connected layer more efficiently than with an encoder-decoder structure, the latter is shown to be more capable of learning long-term dynamics underlying dispersion metrics. Details of the methodology are presented, which include data preprocessing, RNN model exploration, and methods for model performance visualization; an ensemble-based procedure is also introduced to provide a measure of the model uncertainty. The workflow is designed to be generic and can be deployed to make predictions in other industrial applications with similar time-series data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。