Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8âà as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.
An atomic model of brome mosaic virus using direct electron detection and real-space optimization.
阅读:3
作者:Wang Zhao, Hryc Corey F, Bammes Benjamin, Afonine Pavel V, Jakana Joanita, Chen Dong-Hua, Liu Xiangan, Baker Matthew L, Kao Cheng, Ludtke Steven J, Schmid Michael F, Adams Paul D, Chiu Wah
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2014 | 起止号: | 2014 Sep 4; 5:4808 |
| doi: | 10.1038/ncomms5808 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
