Adeno-associated viral (AAV) vectors for gene therapy are becoming integral to modern medicine, providing therapeutic options for diseases once deemed incurable. Currently, optimizing viral vector purification is a critical bottleneck in the gene therapy industry, impacting product efficacy and safety as well as accessibility and cost to patients. Traditional optimization methods are resource-intensive and often fail to adjust the purification process parameters to maximize the resulting product yield and quality. To address this challenge, we developed a machine learning framework that leverages Bayesian optimization to systematically refine affinity chromatography parameters (sample load, flow rate, and the formulation of chromatographic media) to improve AAV purification. The efficiency of this closed-loop workflow in iteratively optimizing the vector's yield, purity, and transduction efficiency was demonstrated by purifying clinically-relevant serotypes AAV2, AAV5, and AAV9 from HEK293 cell lysates using the affinity adsorbent AAVidity. We show that three cycles of Bayesian optimization elevated yields from a baseline of 70% to 99%, while reducing host-cell impurities by 230-to-400-fold across all serotypes. The optimized parameters consistently produced vectors with high purity and preserved high transduction activity, essential for therapeutic efficacy and safety, demonstrating serotype versatility - a key challenge in AAV manufacturing. By streamlining parameter optimization and enhancing productivity, our adaptive machine learning framework accelerates process development and reduces costs, advancing the accessibility and clinical translation of AAV-based gene therapies.
Adaptive Machine Learning Framework enables Unprecedented Yield and Purity of Adeno-Associated Viral Vectors for Gene Therapy.
阅读:3
作者:Idanwekhai Kelvin P, Shastry Shriarjun, Minzoni Arianna, Hurst Morgan R, Barbieri Eduardo, Muratov Eugene N, Daniele Michael A, Menegatti Stefano, Tropsha Alexander
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 May 24 |
| doi: | 10.1101/2025.05.23.655859 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
