MotGen: a closed-loop bacterial motility control framework using generative adversarial networks.

阅读:3
作者:Seo BoGeum, Lee DoHee, Jeon Heungjin, Ha Junhyoung, Suh SeungBeum
MOTIVATION: Many organisms' survival and behavior hinge on their responses to environmental signals. While research on bacteria-directed therapeutic agents has increased, systematic exploration of real-time modulation of bacterial motility remains limited. Current studies often focus on permanent motility changes through genetic alterations, restricting the ability to modulate bacterial motility dynamically on a large scale. To address this gap, we propose a novel real-time control framework for systematically modulating bacterial motility dynamics. RESULTS: We introduce MotGen, a deep learning approach leveraging Generative Adversarial Networks to analyze swimming performance statistics of motile bacteria based on live cell imaging data. By tracking objects and optimizing cell trajectory mapping under environmentally altered conditions, we trained MotGen on a comprehensive statistical dataset derived from real image data. Our experimental results demonstrate MotGen's ability to capture motility dynamics from real bacterial populations with low mean absolute error in both simulated and real datasets. MotGen allows us to approach optimal swimming conditions for desired motility statistics in real-time. MotGen's potential extends to practical biomedical applications, including immune response prediction, by providing imputation of bacterial motility patterns based on external environmental conditions. Our short-term, in-situ interventions for controlling motility behavior offer a promising foundation for the development of bacteria-based biomedical applications. AVAILABILITY AND IMPLEMENTATION: MotGen is presented as a combination of Matlab image analysis code and a machine learning workflow in Python. Codes are available at https://github.com/bgmseo/MotGen, for cell tracking and implementation of trained models to generate bacterial motility statistics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。