In this paper, we present a data workflow developed to operate the adJUstiNg Gain detector FoR the Aramis User station (JUNGFRAU) adaptive gain charge integrating pixel-array detectors at macromolecular crystallography beamlines. We summarize current achievements for operating at 9 GB/s data-rate a JUNGFRAU with 4 Mpixel at 1.1âkHz frame-rate and preparations to operate at 46 GB/s data-rate a JUNGFRAU with 10 Mpixel at 2.2âkHz in the future. In this context, we highlight the challenges for computer architecture and how these challenges can be addressed with innovative hardware including IBM POWER9 servers and field-programmable gate arrays. We discuss also data science challenges, showing the effect of rounding and lossy compression schemes on the MX JUNGFRAU detector images.
JUNGFRAU detector for brighter x-ray sources: Solutions for IT and data science challenges in macromolecular crystallography.
阅读:7
作者:Leonarski Filip, Mozzanica Aldo, Brückner Martin, Lopez-Cuenca Carlos, Redford Sophie, Sala Leonardo, Babic Andrej, Billich Heinrich, Bunk Oliver, Schmitt Bernd, Wang Meitian
| 期刊: | Structural Dynamics-Us | 影响因子: | 2.300 |
| 时间: | 2020 | 起止号: | 2020 Feb 26; 7(1):014305 |
| doi: | 10.1063/1.5143480 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
