The increasing demand for efficient recombinant insulin production necessitates the development of scalable, high-yield, and cost-effective bioprocesses. In this study, we engineered a novel mini-proinsulin (nMPI) with enhanced expression properties by shortening the C-peptide and incorporating specific residue substitutions to eliminate the need for enzymatic cleavage. To optimize its production, we applied a hybrid approach combining microscale high-throughput cultivation using the BioLector microbioreactor and statistical modeling via response surface methodology (RSM). Critical medium components were first screened using Plackett-Burman Design (PBD) and refined through Central Composite Design (CDD), identifying glycerol as the most influential factor for yield. Among the four statistically derived formulations, Scenario III demonstrated the highest productivity in the microscale platform (13.00âg/L) and maintained strong performance upon scale-up to a 3-L bioreactor (11.5âg/L). The optimized medium balanced carbon and nitrogen sources to enhance cell viability and maximize protein expression. This study not only confirms the predictive accuracy and scalability of the hybrid optimization system but also introduces a robust production platform for nMPI that can be translated into industrial settings. The workflow presented here can serve as a model for the development of efficient expression systems for complex recombinant proteins in E. coli.
Optimizing recombinant mini proinsulin production via response surface method and microbioreactor screening.
阅读:3
作者:Ayan Esra, Aytekin Ali Ãzhan, Kati Ahmet, Demirci Hasan
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Sep 8; 20(9):e0329319 |
| doi: | 10.1371/journal.pone.0329319 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
