The increasing deployment of photovoltaic (PV) systems necessitates robust fault detection mechanisms to ensure operational reliability and safety. Conventional approaches, however, struggle in complex industrial environments characterized by high noise, data incompleteness, and class imbalance. This study proposes an innovative Advanced CNN-BiLSTM architecture integrating multi-scale feature extraction with hierarchical attention to enhance PV fault detection. The proposed framework employs four parallel CNN branches with kernel sizes of 3, 7, 15, and 31 to capture temporal patterns across various time scales. These features are then integrated by an adaptive feature fusion network that utilizes multi-head attention. A two-layer bidirectional LSTM with temporal attention mechanism processes the fused features for final classification. Comprehensive evaluation on the GPVS-Faults dataset using a progressive difficulty validation framework demonstrates exceptional performance improvements. Under extreme industrial conditions, the proposed method achieves 83.25% accuracy, representing a substantial 119.48% relative improvement over baseline CNN-BiLSTM (37.93%). Ablation studies reveal that the multi-scale CNN contributes 28.0% of the total performance improvement, while adaptive feature fusion accounts for 22.0%. Furthermore, the proposed method demonstrates superior robustness under severe noise (Ï = 0.20), high levels of missing data (15%), and significant outlier contamination (8%). These characteristics make the architecture highly suitable for real-world industrial deployment and establish a new paradigm for temporal feature fusion in renewable energy fault detection.
Advanced Multi-Scale CNN-BiLSTM for Robust Photovoltaic Fault Detection.
阅读:3
作者:Zhang Xiaojuan, Jing Bo, Jiao Xiaoxuan, Yao Ruixu
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Jul 18; 25(14):4474 |
| doi: | 10.3390/s25144474 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
