Integration of Quantum Chemistry, Statistical Mechanics, and Artificial Intelligence for Computational Spectroscopy: The UV-Vis Spectrum of TEMPO Radical in Different Solvents.

阅读:3
作者:Falbo Emanuele, Fusè Marco, Lazzari Federico, Mancini Giordano, Barone Vincenzo
The ongoing integration of quantum chemistry, statistical mechanics, and artificial intelligence is paving the route toward more effective and accurate strategies for the investigation of the spectroscopic properties of medium-to-large size chromophores in condensed phases. In this context we are developing a novel workflow aimed at improving the generality, reliability, and ease of use of the available computational tools. In this paper we report our latest developments with specific reference to unsupervised atomistic simulations employing non periodic boundary conditions (NPBC) followed by clustering of the trajectories employing optimized feature spaces. Next accurate variational computations are performed for a representative point of each cluster, whereas intracluster fluctuations are taken into account by a cheap yet reliable perturbative approach. A number of methodological improvements have been introduced including, e.g., more realistic reaction field effects at the outer boundary of the simulation sphere, automatic definition of the feature space by continuous perception of solute-solvent interactions, full account of polarization and charge transfer in the first solvation shell, and inclusion of vibronic contributions. After its validation, this new approach has been applied to the challenging case of solvatochromic effects on the UV-vis spectra of a prototypical nitroxide radical (TEMPO) in different solvents. The reliability, effectiveness, and robustness of the new platform is demonstrated by the remarkable agreement with experiment of the results obtained through an unsupervised approach characterized by a strongly reduced computational cost as compared to that of conventional quantum mechanics and molecular mechanics models without any accuracy reduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。