In clinical microbiology laboratories, routine microbial identification is mostly performed using culture based methodologies requiring 24 to 72 hours from culturing to identification. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technology has been established as a cost effective, reliable, and faster alternative identification platform. In this study, we evaluated the reliability of the two available MALDI-TOF MS systems for their routine clinical level identification accuracy and efficiency in a clinical microbiology laboratory setting. A total of 1,341 routine phenotypically identified clinical bacterial and fungal isolates were selected and simultaneously analyzed using VITEK MS (bioMérieux, France) and Microflex LT (Bruker Diagnostics, Germany) MALDI-TOF MS systems. For any isolate that could not be identified with either of the systems and for any discordant result, 16S rDNA gene or ITS1/ITS2 sequencing was used. VITEK MS and Microflex LT correctly identified 1,303 (97.17%) and 1,298 (96.79%) isolates to the species level, respectively. In 114 (8.50%) isolates initial phenotypic identification was inaccurate. Both systems showed a similar identification efficiency and workflow robustness, and they were twice as more accurate compared to routine phenotypic identification in our sample pool. MALDITOF systems with their accuracy and robustness offer a good identification platform for routine clinical microbiology laboratories.
Performances and Reliability of Bruker Microflex LT and VITEK MS MALDI-TOF Mass Spectrometry Systems for the Identification of Clinical Microorganisms.
阅读:10
作者:Bilecen Kivanc, Yaman Gorkem, Ciftci Ugur, Laleli Yahya Rauf
| 期刊: | Biomed Research International | 影响因子: | 2.300 |
| 时间: | 2015 | 起止号: | 2015;2015:516410 |
| doi: | 10.1155/2015/516410 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
