Automated Quality Assurance of OAR Contouring for Lung Cancer Based on Segmentation With Deep Active Learning.

阅读:3
作者:Men Kuo, Geng Huaizhi, Biswas Tithi, Liao Zhongxing, Xiao Ying
Purpose: Ensuring high-quality data for clinical trials in radiotherapy requires the generation of contours that comply with protocol definitions. The current workflow includes a manual review of the submitted contours, which is time-consuming and subjective. In this study, we developed an automated quality assurance (QA) system for lung cancer based on a segmentation model trained with deep active learning. Methods: The data included a gold atlas with 36 cases and 110 cases from the "NRG Oncology/RTOG 1308 Trial". The first 70 cases enrolled to the RTOG 1308 formed the candidate set, and the remaining 40 cases were randomly assigned to validation and test sets (each with 20 cases). The organs-at-risk included the heart, esophagus, spinal cord, and lungs. A preliminary convolutional neural network segmentation model was trained with the gold standard atlas. To address the deficiency of the limited training data, we selected quality images from the candidate set to be added to the training set for fine-tuning of the model with deep active learning. The trained robust segmentation models were used for QA purposes. The segmentation evaluation metrics derived from the validation set, including the Dice and Hausdorff distance, were used to develop the criteria for QA decision making. The performance of the strategy was assessed using the test set. Results: The QA method achieved promising contouring error detection, with the following metrics for the heart, esophagus, spinal cord, left lung, and right lung: balanced accuracy, 0.96, 0.95, 0.96, 0.97, and 0.97, respectively; sensitivity, 0.95, 0.98, 0.96, 1.0, and 1.0, respectively; specificity, 0.98, 0.92, 0.97, 0.94, and 0.94, respectively; and area under the receiving operator characteristic curve, 0.96, 0.95, 0.96, 0.97, and 0.94, respectively. Conclusions: The proposed system automatically detected contour errors for QA. It could provide consistent and objective evaluations with much reduced investigator intervention in multicenter clinical trials.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。