Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration.

阅读:4
作者:Grupp Robert B, Unberath Mathias, Gao Cong, Hegeman Rachel A, Murphy Ryan J, Alexander Clayton P, Otake Yoshito, McArthur Benjamin A, Armand Mehran, Taylor Russell H
PURPOSE: Fluoroscopy is the standard imaging modality used to guide hip surgery and is therefore a natural sensor for computer-assisted navigation. In order to efficiently solve the complex registration problems presented during navigation, human-assisted annotations of the intraoperative image are typically required. This manual initialization interferes with the surgical workflow and diminishes any advantages gained from navigation. In this paper, we propose a method for fully automatic registration using anatomical annotations produced by a neural network. METHODS: Neural networks are trained to simultaneously segment anatomy and identify landmarks in fluoroscopy. Training data are obtained using a computationally intensive, intraoperatively incompatible, 2D/3D registration of the pelvis and each femur. Ground truth 2D segmentation labels and anatomical landmark locations are established using projected 3D annotations. Intraoperative registration couples a traditional intensity-based strategy with annotations inferred by the network and requires no human assistance. RESULTS: Ground truth segmentation labels and anatomical landmarks were obtained in 366 fluoroscopic images across 6 cadaveric specimens. In a leave-one-subject-out experiment, networks trained on these data obtained mean dice coefficients for left and right hemipelves, left and right femurs of 0.86, 0.87, 0.90, and 0.84, respectively. The mean 2D landmark localization error was 5.0 mm. The pelvis was registered within [Formula: see text] for 86% of the images when using the proposed intraoperative approach with an average runtime of 7 s. In comparison, an intensity-only approach without manual initialization registered the pelvis to [Formula: see text] in 18% of images. CONCLUSIONS: We have created the first accurately annotated, non-synthetic, dataset of hip fluoroscopy. By using these annotations as training data for neural networks, state-of-the-art performance in fluoroscopic segmentation and landmark localization was achieved. Integrating these annotations allows for a robust, fully automatic, and efficient intraoperative registration during fluoroscopic navigation of the hip.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。