Behavior and Task Classification Using Wearable Sensor Data: A Study across Different Ages.

阅读:4
作者:Gasparini Francesca, Grossi Alessandra, Giltri Marta, Nishinari Katsuhiro, Bandini Stefania
In this paper, we face the problem of task classification starting from physiological signals acquired using wearable sensors with experiments in a controlled environment, designed to consider two different age populations: young adults and older adults. Two different scenarios are considered. In the first one, subjects are involved in different cognitive load tasks, while in the second one, space varying conditions are considered, and subjects interact with the environment, changing the walking conditions and avoiding collision with obstacles. Here, we demonstrate that it is possible not only to define classifiers that rely on physiological signals to predict tasks that imply different cognitive loads, but it is also possible to classify both the population group age and the performed task. The whole workflow of data collection and analysis, starting from the experimental protocol, data acquisition, signal denoising, normalization with respect to subject variability, feature extraction and classification is described here. The dataset collected with the experiments together with the codes to extract the features of the physiological signals are made available for the research community.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。