In order to improve the performance of a micro-electro-mechanical system (MEMS) accelerometer, three algorithms for compensating its temperature drift are proposed in this paper, including deep long short-term memory recurrent neural network (DLSTM-RNN, short DLSTM), DLSTM based on sparrow search algorithm (SSA), and DLSTM based on improved SSA (ISSA). Moreover, the piecewise linear approximation (PLA) method is employed in this paper as a comparison to evaluate the impact of the proposed algorithm. First, a temperature experiment is performed to obtain the MEMS accelerometer's temperature drift output (TDO). Then, we propose a real-time compensation model and a linear approximation model for neural network methods compensation and PLA method compensation, respectively. The real-time compensation model is a recursive method based on the TDO at the last moment. The linear approximation model considers the MEMS accelerometer's temperature and TDO as input and output, respectively. Next, the TDO is analyzed and optimized by the real-time compensation model and the three algorithms mentioned before. Moreover, the TDO is also compensated by the linear approximation model and PLA method as a comparison. The compensation results show that the three neural network methods and the PLA method effectively compensate for the temperature drift of the MEMS accelerometer, and the DLSTM + ISSA method achieves the best compensation effect. After compensation by DLSTM + ISSA, the three Allen variance coefficients of the MEMS accelerometer that bias instability, rate random walk, and rate ramp are improved from 5.43Ã10-4mg, 4.33Ã10-5mg/s12, 1.18Ã10-6mg/s to 2.77Ã10-5mg, 1.14Ã10-6mg/s12, 2.63Ã10-8mg/s, respectively, with an increase of 96.68% on average.
Temperature Drift Compensation of a MEMS Accelerometer Based on DLSTM and ISSA.
阅读:3
作者:Guo Gangqiang, Chai Bo, Cheng Ruichu, Wang Yunshuang
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2023 | 起止号: | 2023 Feb 6; 23(4):1809 |
| doi: | 10.3390/s23041809 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
