scFocus: Detecting branching probabilities in single-cell data with SAC.

阅读:14
作者:Chen Chunlin, Fu Zeyu, Yang Jiajia, Chen Huaqing, Huang Jiabao, Qin Shitian, Wang Chuhuai, Hu Xiaoqian
Single-cell transcriptomics captures cell differentiation trajectories through changes in gene expression intensity. However, it is challenging to obtain precise information on the composition of gene sets corresponding to each lineage branch in complex biological systems. The combination of branch probabilities and unsupervised clustering can effectively characterize changes in gene expression intensity, reflecting continuous cell states without relying on prior information. In this study, we propose a analytic algorithm named single-cell (sc)-Focus that divides cell subpopulations based on reinforcement learning and unsupervised branching in low-dimensional latent space of single cells. The lineage component strength of scFocus coincides with the expression regions of hallmark genes, capturing differentiation processes more effectively in comparison to the original low-dimensional latent space and showing a stronger subpopulation discriminative power. Furthermore, scFocus is applied to ten single-cell datasets, including small-scale datasets, common-scale datasets, and multi-batch datasets. This demonstrates its applicability on different types of datasets and showcases its potential in discovering biological changes due to experimental treatments through multi-batch dataset processing. Finally, an online analysis tool based on scFocus was developed, helping researchers and clinicians in the process and visualization of single-cell RNA sequencing data as well as the interpretation of these data through branch probabilities in a streamlined and intuitive way.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。