The effect of normalisation and error model choice on the distribution of the maximum likelihood estimator for a biochemical reaction.

阅读:4
作者:Thomaseth Caterina, Radde Nicole E
Sparse and noisy measurements make parameter estimation for biochemical reaction networks difficult and might lead to ill-posed optimisation problems. This is potentiated if the data has to be normalised, and only fold changes rather than absolute amounts are available. Here, the authors consider the propagation of measurement noise to the distribution of the maximum likelihood (ML) estimator in an in silico study. Therefore, a model of a reversible reaction is considered, for which reaction rate constants using fold changes is estimated. Noise propagation is analysed for different normalisation strategies and different error models. In particular, accuracy, precision, and asymptotic properties of the ML estimator is investigated. Results show that normalisation by the mean of a time series outperforms normalisation by a single time point in the example provided by the authors. Moreover, the error model with a heavy-tail distribution is slightly more robust to large measurement noise, but, beyond this, the choice of the error model did not have a significant impact on the estimation results provided by the authors.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。