Blunting specific T-dependent antibody responses with engineered "decoy" B cells.

阅读:9
作者:Pitner Ragan A, Chao Jaime L, Dahl Noelle P, Fan Meng-Ni, Cai Xiaohe, Avery Nathan G, Roe Kelsey, Spiegel P Clint Jr, Miao Carol H, Gerner Michael Y, James Richard G, Rawlings David J
Antibody inhibitors pose an ongoing challenge to the treatment of subjects with inherited protein deficiency disorders, limiting the efficacy of both protein replacement therapy and corrective gene therapy. Beyond their central role as producers of serum antibody, B cells also exhibit many unique properties that could be exploited in cell therapy applications, notably including antigen-specific recognition and the linked capacity for antigen presentation. Here we employed CRISPR-Cas9 to demonstrate that ex vivo antigen-primed Blimp1-knockout "decoy" B cells, incapable of differentiation into plasma cells, participated in and downregulated host antigen-specific humoral responses after adoptive transfer. Following ex vivo antigen pulse, adoptively transferred high-affinity antigen-specific decoy B cells were diverted into germinal centers en masse, thereby reducing participation by endogenous antigen-specific B cells in T-dependent humoral responses and suppressing both cognate and linked antigen-specific immunoglobulin (Ig)G following immunization with conjugated antigen. This effect was dose-dependent and, importantly, did not impact concurrent unrelated antibody responses. We demonstrated the therapeutic potential of this approach by treating factor VIII (FVIII)-knockout mice with antigen-pulsed decoy B cells prior to immunization with an FVIII conjugate protein, thereby blunting the production of serum FVIII-specific IgG by an order of magnitude as well as reducing the proportion of animals exhibiting functional FVIII inhibition by 6-fold.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。