Cell clustering is an essential step in uncovering cellular architectures in single cell RNA-sequencing (scRNA-seq) data. However, the existing cell clustering approaches are not well designed to dissect complex structures of cellular landscapes at a finer resolution. Here, we develop a multi-scale clustering (MSC) approach to construct sparse cell-cell correlation network for identifying de novo cell types and subtypes at multiscale resolution in an unsupervised manner. Based upon simulated, silver and gold standard data as well as real scRNA-seq data in diseases, MSC showed much improved performance in comparison to established benchmark methods, and identified biologically meaningful cell hierarchy to facilitate the discovery of novel disease associated cell subtypes and mechanisms.
Unsupervised multi-scale clustering of single-cell transcriptomes to identify hierarchical structures of cell subtypes.
阅读:9
作者:Song Won-Min, Ming Chen, Forst Christian V, Zhang Bin
| 期刊: | Res Sq | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Dec 23 |
| doi: | 10.21203/rs.3.rs-5671748/v1 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
