Precisely segmented lung fields restrict the region-of-interest from which radiological patterns are searched, and is thus an indispensable prerequisite step in any chest radiographic CADx system. Recently, a number of deep learning-based approaches have been proposed to implement this step. However, deep learning has its own limitations and cannot be used in resource-constrained settings. Medical systems generally have limited RAM, computational power, storage, and no GPUs. They are thus not always suited for running deep learning-based models. Shallow learning-based models with appropriately selected features give comparable performance but with modest resources. The present paper thus proposes a shallow learning-based method that makes use of 40 radiomic features to segment lung fields from chest radiographs. A distance regularized level set evolution (DRLSE) method along with other post-processing steps are used to refine its output. The proposed method is trained and tested using publicly available JSRT dataset. The testing results indicate that the performance of the proposed method is comparable to the state-of-the-art deep learning-based lung field segmentation (LFS) methods and better than other LFS methods.
Segmentation of lung fields from chest radiographs-a radiomic feature-based approach.
阅读:7
作者:Hooda Rahul, Mittal Ajay, Sofat Sanjeev
| 期刊: | Biomedical Engineering Letters | 影响因子: | 2.800 |
| 时间: | 2019 | 起止号: | 2018 Oct 17; 9(1):109-117 |
| doi: | 10.1007/s13534-018-0086-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
