Pharmacodynamic (PD) models are mathematical models of cellular reaction networks that include drug mechanisms of action. These models are useful for studying predictive therapeutic outcomes of novel drug therapies in silico. However, PD models are known to possess significant uncertainty with respect to constituent parameter data, leading to uncertainty in the model predictions. Furthermore, experimental data to calibrate these models is often limited or unavailable for novel pathways. In this study, we present a Bayesian optimal experimental design approach for improving PD model prediction accuracy. We then apply our method using simulated experimental data to account for uncertainty in hypothetical laboratory measurements. This leads to a probabilistic prediction of drug performance and a quantitative measure of which prospective laboratory experiment will optimally reduce prediction uncertainty in the PD model. The methods proposed here provide a way forward for uncertainty quantification and guided experimental design for models of novel biological pathways.
Identifying Bayesian optimal experiments for uncertain biochemical pathway models.
阅读:3
作者:Isenberg Natalie M, Mertins Susan D, Yoon Byung-Jun, Reyes Kristofer G, Urban Nathan M
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Jul 2; 14(1):15237 |
| doi: | 10.1038/s41598-024-65196-w | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
