Ensemble-Learning Framework for Intrusion Detection to Enhance Internet of Things' Devices Security.

阅读:4
作者:Alotaibi Yazeed, Ilyas Mohammad
The Internet of Things (IoT) comprises a network of interconnected nodes constantly communicating, exchanging, and transferring data over various network protocols. Studies have shown that these protocols pose a severe threat (Cyber-attacks) to the security of data transmitted due to their ease of exploitation. In this research, we aim to contribute to the literature by improving the Intrusion Detection System (IDS) detection efficiency. In order to improve the efficiency of the IDS, a binary classification of normal and abnormal IoT traffic is constructed to enhance the IDS performance. Our method employs various supervised ML algorithms and ensemble classifiers. The proposed model was trained on TON-IoT network traffic datasets. Four of the trained ML-supervised models have achieved the highest accurate outcomes; Random Forest, Decision Tree, Logistic Regression, and K-Nearest Neighbor. These four classifiers are fed to two ensemble approaches: voting and stacking. The ensemble approaches were evaluated using the evaluation metrics and compared for their efficacy on this classification problem. The accuracy of the ensemble classifiers was higher than that of the individual models. This improvement can be attributed to ensemble learning strategies that leverage diverse learning mechanisms with varying capabilities. By combining these strategies, we were able to enhance the reliability of our predictions while reducing the occurrence of classification errors. The experimental results show that the framework can improve the efficiency of the Intrusion Detection System, achieving an accuracy rate of 0.9863.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。