Deep mutational scanning (DMS) enables multiplexed measurement of the effects of thousands of variants of proteins, RNAs, and regulatory elements. Here, we present a customizable pipeline, DiMSum, that represents an end-to-end solution for obtaining variant fitness and error estimates from raw sequencing data. A key innovation of DiMSum is the use of an interpretable error model that captures the main sources of variability arising in DMS workflows, outperforming previous methods. DiMSum is available as an R/Bioconda package and provides summary reports to help researchers diagnose common DMS pathologies and take remedial steps in their analyses.
DiMSum: an error model and pipeline for analyzing deep mutational scanning data and diagnosing common experimental pathologies.
阅读:3
作者:Faure Andre J, Schmiedel Jörn M, Baeza-Centurion Pablo, Lehner Ben
| 期刊: | Genome Biology | 影响因子: | 9.400 |
| 时间: | 2020 | 起止号: | 2020 Aug 17; 21(1):207 |
| doi: | 10.1186/s13059-020-02091-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
