The field of cancer genomics has demonstrated the power of massively parallel sequencing techniques to inform on the genes and specific alterations that drive tumor onset and progression. Although large comprehensive sequence data sets continue to be made increasingly available, data analysis remains an ongoing challenge, particularly for laboratories lacking dedicated resources and bioinformatics expertise. To address this, we have produced a collection of Galaxy tools that represent many popular algorithms for detecting somatic genetic alterations from cancer genome and exome data. We developed new methods for parallelization of these tools within Galaxy to accelerate runtime and have demonstrated their usability and summarized their runtimes on multiple cloud service providers. Some tools represent extensions or refinement of existing toolkits to yield visualizations suited to cohort-wide cancer genomic analysis. For example, we present Oncocircos and Oncoprintplus, which generate data-rich summaries of exome-derived somatic mutation. Workflows that integrate these to achieve data integration and visualizations are demonstrated on a cohort of 96 diffuse large B-cell lymphomas and enabled the discovery of multiple candidate lymphoma-related genes. Our toolkit is available from our GitHub repository as Galaxy tool and dependency definitions and has been deployed using virtualization on multiple platforms including Docker.
Enhancing knowledge discovery from cancer genomics data with Galaxy.
阅读:6
作者:Albuquerque Marco A, Grande Bruno M, Ritch Elie J, Pararajalingam Prasath, Jessa Selin, Krzywinski Martin, Grewal Jasleen K, Shah Sohrab P, Boutros Paul C, Morin Ryan D
| 期刊: | Gigascience | 影响因子: | 3.900 |
| 时间: | 2017 | 起止号: | 2017 May 1; 6(5):1-13 |
| doi: | 10.1093/gigascience/gix015 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
