Challenges and Opportunities for Bayesian Statistics in Proteomics.

阅读:6
作者:Crook Oliver M, Chung Chun-Wa, Deane Charlotte M
Proteomics is a data-rich science with complex experimental designs and an intricate measurement process. To obtain insights from the large data sets produced, statistical methods, including machine learning, are routinely applied. For a quantity of interest, many of these approaches only produce a point estimate, such as a mean, leaving little room for more nuanced interpretations. By contrast, Bayesian statistics allows quantification of uncertainty through the use of probability distributions. These probability distributions enable scientists to ask complex questions of their proteomics data. Bayesian statistics also offers a modular framework for data analysis by making dependencies between data and parameters explicit. Hence, specifying complex hierarchies of parameter dependencies is straightforward in the Bayesian framework. This allows us to use a statistical methodology which equals, rather than neglects, the sophistication of experimental design and instrumentation present in proteomics. Here, we review Bayesian methods applied to proteomics, demonstrating their potential power, alongside the challenges posed by adopting this new statistical framework. To illustrate our review, we give a walk-through of the development of a Bayesian model for dynamic organic orthogonal phase-separation (OOPS) data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。