Background: Over the past few decades, micro ribonucleic acids (miRNAs) have been shown to play significant roles in various biological processes, including disease incidence. Therefore, much effort has been devoted to discovering the pivotal roles of miRNAs in disease incidence to understand the underlying pathogenesis of human diseases. However, identifying miRNA-disease associations using biological experiments is inefficient in terms of cost and time. Methods: Here, we discuss a novel machine-learning model that effectively predicts disease-related miRNAs using a graph convolutional neural network with neural collaborative filtering (GCNCF). By applying the graph convolutional neural network, we could effectively capture important miRNAs and disease feature vectors present in the network while preserving the network structure. By exploiting neural collaborative filtering, miRNAs and disease feature vectors were effectively learned through matrix factorization and deep learning, and disease-related miRNAs were identified. Results: Extensive experimental results based on area under the curve (AUC) scores (0.9216 and 0.9018) demonstrated the superiority of our model over previous models. Conclusions: We anticipate that our model could not only serve as an effective tool for predicting disease-related miRNAs but could be employed as a universal computational framework for inferring relationships across biological entities.
Graph Convolutional Network with Neural Collaborative Filtering for Predicting miRNA-Disease Association.
阅读:3
作者:Ha, Jihwan
| 期刊: | Biomedicines | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 8; 13(1):136 |
| doi: | 10.3390/biomedicines13010136 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
