The binding of transcription factors at proximal promoters and distal enhancers is central to gene regulation. Identifying regulatory motifs and quantifying their impact on expression remains challenging. Using a convolutional neural network trained on single-cell data, we infer putative regulatory motifs and cell type-specific importance. Our model, scover, explains 29% of the variance in gene expression in multiple mouse tissues. Applying scover to distal enhancers identified using scATAC-seq from the developing human brain, we identify cell type-specific motif activities in distal enhancers. Scover can identify regulatory motifs and their importance from single-cell data where all parameters and outputs are easily interpretable.
Predicting the impact of sequence motifs on gene regulation using single-cell data.
阅读:3
作者:Hepkema Jacob, Lee Nicholas Keone, Stewart Benjamin J, Ruangroengkulrith Siwat, Charoensawan Varodom, Clatworthy Menna R, Hemberg Martin
| 期刊: | Genome Biology | 影响因子: | 9.400 |
| 时间: | 2023 | 起止号: | 2023 Aug 15; 24(1):189 |
| doi: | 10.1186/s13059-023-03021-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
