Tube2FEM: a general-purpose highly automated pipeline for flow-related processes in (embedded) tubular objects.

阅读:7
作者:Cheikh Sleiman Hani, Moerman Kevin M, C De Oliveira Diana, Jacob Joseph, Mogulkoc Nesrin, Davidson Brian R, Walker-Samuel Simon, Shipley Rebecca J
This paper presents an open-source pipeline for simulating flow and flow-related processes in (embedded) tubular structures. Addressing a gap in computational fluid dynamics (CFD) and simulation sciences, it facilitates the transition from raw three-dimensional imaging, graph networks or computer aided design (CAD) models of tubular objects to refined, simulation-ready meshes. This transition, traditionally labour-intensive, is streamlined through a series of innovative steps that include surface mesh processing, centre-line construction, anisotropic mesh generation and volumetric meshing, leading to finite element method (FEM) simulations. The pipeline leverages a range of open-source software and libraries, notably GIBBON, FEniCS and Paraview, to provide flexibility and broad applicability across different simulation scenarios, ranging from biomedical to industrial applications. We demonstrate the versatility of our approach through five applications, including the mesh generation for soil-root systems, lung airways, microcirculation networks and portal vein networks, each originating from a different data source. Moreover, for several of these cases, we incorporate CFD simulations and strategies for 3D-1D coupling between the embedding domain and the embedded structures. Finally, we outline some future perspectives aimed at enhancing accuracy, reducing computational time and incorporating advanced modelling and boundary condition strategies to further refine the framework's capabilities.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。