Question matching is the fundamental task in retrieval-based dialogue systems which assesses the similarity between Query and Question. Unfortunately, existing methods focus on improving the accuracy of text similarity in the general domain, without adaptation to the financial domain. Financial question matching has two critical issues: (1) How to accurately model the contextual representation of a financial sentence? (2) How to accurately represent financial key phrases in an utterance? To address these issues, this paper proposes a novel Financial Knowledge Enhanced Network (FinKENet) that significantly injects financial knowledge into contextual text. Specifically, we propose a multi-level encoder to extract both sentence-level features and financial phrase-level features, which can more accurately represent sentences and financial phrases. Furthermore, we propose a financial co-attention adapter to combine sentence features and financial keyword features. Finally, we design a multi-level similarity decoder to calculate the similarity between queries and questions. In addition, a cross-entropy-based loss function is presented for model optimization. Experimental results demonstrate the effectiveness of the proposed method on the Ant Financial question matching dataset. In particular, the Recall score improves from 73.21% to 74.90% (1.69% absolute).
FinKENet: A Novel Financial Knowledge Enhanced Network for Financial Question Matching.
阅读:13
作者:Guo Yu, Liang Ting, Chen Zhongpu, Yang Binchen, Wang Jun, Zhao Yu
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2023 | 起止号: | 2023 Dec 26; 26(1):26 |
| doi: | 10.3390/e26010026 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
