Stereo image dense matching, which plays a key role in 3D reconstruction, remains a challenging task in photogrammetry and computer vision. In addition to block-based matching, recent studies based on artificial neural networks have achieved great progress in stereo matching by using deep convolutional networks. This study proposes a novel network called a dual guided aggregation network (Dual-GANet), which utilizes both left-to-right and right-to-left image matchings in network design and training to reduce the possibility of pixel mismatch. Flipped training with a cost volume consistentization is introduced to realize the learning of invisible-to-visible pixel matching and leftâright consistency matching. In addition, suppressed multi-regression is proposed, which suppresses unrelated information before regression and selects multiple peaks from a disparity probability distribution. The proposed dual network with the leftâright consistent matching scheme can be applied to most stereo matching models. To estimate the performance, GANet, which is designed based on semi-global matching, was selected as the backbone with extensions and modifications on guided aggregation, disparity regression, and loss function. Experimental results on the SceneFlow and KITTI2015 datasets demonstrate the superiority of the Dual-GANet compared to related models in terms of average end-point-error (EPE) and pixel error rate (ER). The Dual-GANet with an average EPE performance = 0.418 and ER (>1 pixel) = 5.81% for SceneFlow and average EPE = 0.589 and ER (>3 pixels) = 1.76% for KITTI2005 is better than the backbone model with the average EPE performance of = 0.440 and ER (>1 pixel) = 6.56% for SceneFlow and average EPE = 0.790 and ER (>3 pixels) = 2.32% for KITTI2005.
Dual Guided Aggregation Network for Stereo Image Matching.
阅读:11
作者:Wang Ruei-Ping, Lin Chao-Hung
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Aug 16; 22(16):6111 |
| doi: | 10.3390/s22166111 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
