Elucidation of dynamic microRNA regulations in cancer progression using integrative machine learning.

阅读:3
作者:Dogan Haluk, Hakguder Zeynep, Madadjim Roland, Scott Stephen, Pierobon Massimiliano, Cui Juan
MOTIVATION: Empowered by advanced genomics discovery tools, recent biomedical research has produced a massive amount of genomic data on (post-)transcriptional regulations related to transcription factors, microRNAs, long non-coding RNAs, epigenetic modifications and genetic variations. Computational modeling, as an essential research method, has generated promising testable quantitative models that represent complex interplay among different gene regulatory mechanisms based on these data in many biological systems. However, given the dynamic changes of interactome in chaotic systems such as cancers, and the dramatic growth of heterogeneous data on this topic, such promise has encountered unprecedented challenges in terms of model complexity and scalability. In this study, we introduce a new integrative machine learning approach that can infer multifaceted gene regulations in cancers with a particular focus on microRNA regulation. In addition to new strategies for data integration and graphical model fusion, a supervised deep learning model was integrated to identify conditional microRNA-mRNA interactions across different cancer stages. RESULTS: In a case study of human breast cancer, we have identified distinct gene regulatory networks associated with four progressive stages. The subsequent functional analysis focusing on microRNA-mediated dysregulation across stages has revealed significant changes in major cancer hallmarks, as well as novel pathological signaling and metabolic processes, which shed light on microRNAs' regulatory roles in breast cancer progression. We believe this integrative model can be a robust and effective discovery tool to understand key regulatory characteristics in complex biological systems. AVAILABILITY: http://sbbi-panda.unl.edu/pin/.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。